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Abstract
We will show that if the kernel K(x, t) in the representation f (t) =∫ a

0 K(x, t)u(t) dq t , with u ∈ L2
q(0, a), is a solution of a second-order q-Sturm–

Liouville boundary problem, then f admits a representation as a sampling
formula of the form f (t) = ∑∞

n=0 f (λn)W(t)/[W ′(λn)(t − λn)], where λn is
the nth eigenvalue of the associated q-Sturm–Liouville boundary problem and
W(t) is the q-Wronskian of two solutions selected in a specified way.

PACS number: 02.40.−f
Mathematics Subject Classification: 94A20, 39A13, 33D15

1. Introduction

The celebrated Whittaker–Shannon–Kotel’nikov theorem states that every integral transform
of the form

f (x) =
∫ π

−π

eixtu(t) dt,

where u ∈ L2(−π, π), can be written as the sampling formula

f (x) =
∞∑

n=−∞
f (n)

sin π(x − n)

π(x − n)
. (1)

Writing

L(x) = sin πz = πz

∞∏
n=1

(
1 − z2

n2

)

then the Whittaker–Shannon–Kotel’nikov theorem is a Lagrange-type interpolation formula
of the form

f (x) =
∞∑

n=−∞
f (n)

L(x)

L′(n)(x − n)
. (2)
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The quest of writing sampling theorems as Lagrange-type interpolation formulae has attracted
a considerable amount of research over the years. When the kernel eixt is replaced by some
function in the context of Kramer’s lemma, then often there are special function formulae
available to perform the task. This is also the case of the functions orthogonal with respect
to their own zeros [3]. Another interesting situation occurs when the kernel of the integral
transform arises from a second-order differential equation. A major achievement in this
direction is due to Zayed, Hinsen and Butzer [20]. They considered the second-order Sturm–
Liouville eigenvalue as

−y ′′(x) + v(x)y(x) = λy(x), (3)

where v(x) is defined on the finite interval [a, b] together with the initial conditions

cos αy(a) + sin αy ′(a) = 0 cos βy(b) + sin βy ′(b) = 0

and selected a particular solution of the problem satisfying ϕ(a, λ) = sin α and ϕ′(a, λ) =
−cos α and another one satisfying ψ(b, λ) = sin β and ψ ′(b, λ) = −cos β. Within this
setting, their main theorem reads as follows:

Theorem A. Every function f that can be written as an integral transform of the form

f (λ) =
∫ b

a

u(x)ϕ(x, λ) dx,

where u ∈ L2(a, b) admits a sampling representation of the form

f (λ) =
∞∑

n=0

f (λn)
W(λ)

W ′(λn)(λ − λn)
,

where W(λ) is the Wronskian of the functions ϕ(x, λ) and ψ(x, λ).

The construction of expansions in q-Fourier series ([8, 9]) was followed by the derivation
of the q-sampling theorems ([2, 5, 14]). The most relevant feature present in all of
these q-sampling theorems is the sparsity of their sampling nodes, located at the zeros
of the q-analogues of the sin x. Recent research about these zeros ([1, 18]) indicates
that, for big n, they behave very much like sequences of the form q−n. Therefore, the
resulting sampling expansions provide a process of reconstructing signals from samples
that become sparse as they move away from the origin. As an instance, every function
f within the setting of our main result in [2] contains all its information on the sequence
{f (q−n+εn )}n∈N, 0 < εn < 1, 0 < q < 1. That is, whereas the sampling theorems of the
Whittaker–Shannon–Kotel’nikov type identify a function with its values over an arithmetic
sequence (or close to such a sequence, as in the case of irregular sampling), the q-sampling
theorems identify a function with its values over a geometric sequence. The other novel aspect
of the q-sampling theorems is the presence of the parameter q itself. For every realization of
the parameter we have a different sampling theory, with different sampling nodes. The idea of
using q-deformations of classical results has showed before to be a successful one in physical
mathematics as can be testified by the considerable amount of research about the q-harmonic
oscillator that followed [7] or the surge of the theory of quantum groups and their connections
to q-special functions [10].

For a comprehensive introduction to the subject of sampling from a classic point of view
we refer to [13]. For an exposition of modern sampling methods and how they were inspired
by physical problems in communication, astronomy and medicine, we suggest the reading of
[4], where algorithms for practical reconstruction of signals from samples also are included.
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The purpose of the present paper is to construct a q-analogue of theorem A, building
on recent results of Annaby and Mansour [6], who provided a detailed study of the
basis properties of solutions of q-Sturm–Liouville systems, inspired by the formal work of
Exton [11].

2. Preliminaries on q-calculus

Following the standard notation in [12], consider a number 0 < q < 1 and define the q-shifted
factorial for n finite and different from zero as

(a; q)n = (1 − q)(1 − aq) · · · (1 − aqn−1)

and the zero and infinite cases as

(a; q)0 = 1, (a; q)∞ = lim
n→∞(a; q)n.

The q-difference operator Dq is defined as

Dqf (x) = f (x) − f (qx)

x(1 − q)
.

When required q will be replaced by q−1. The following facts can be verified directly from
the definition and will be used often:

Dq−1f (x) = (Dqf )(xq−1), D2
qf (q−1x) = qDq[Dqf (q−1x)] = Dq−1Dqf (x).

Associated with this operator there is a nonsymmetric formula for the q-differentiation of a
product

Dq[f (x)g(x)] = f (qx)Dqg(x) + g(x)Dqf (x). (4)

The q-integral usually associated with the name of Jackson is defined, in the interval (0, a), as∫ a

0
f (x) dqx = (1 − q)

∞∑
n=0

f (aqn)aqn.

Let L2
q(0, a) be the space of all complex-valued functions defined on (0, a), such that

‖f ‖ =
[∫ a

0
|f (x)|2 dqx

] 1
2

< ∞.

The space L2
q(0, a) is a separable Hilbert space (see [5] for details) with the inner product

〈f, g〉 =
∫ a

0
f (x)g(x) dqx.

Through the remainder of the text we will deal only with functions q-regular at zero, that is,
functions such that

lim
n→∞ f (qnx) = f (0).

The class of the functions which are q-regular at zero includes the continuous functions. An
example of a function that is not q-regular at zero is given by [17]

f (x) = sin(α log x) with α log q = 2π.

If f and g are both q-regular at zero, there is a rule of q-integration by parts given by∫ a

0
g(x)Dqf (x) dqx = (fg)(a) − (fg)(0) −

∫ a

0
Dqg(x)f (qx) dqx. (5)
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The q appearing in the argument of f in the right-hand side integrand is another manifestation
of the asymmetry that is everywhere present in q-calculus. As an important special case, we
have ∫ a

0
Dqf (x) dqx = (f )(a) − (f )(0). (6)

For these and other formulae, we refer to [15].

3. The q-Sturm–Liouville problem

We will consider a q-Sturm–Liouville equation of the form

− 1

q
Dq−1Dqy(x) + v(x)y(x) = λy(x) 0 � x � a < ∞, λ ∈ C. (7)

with v(x) defined on the interval [0, a], together with the initial conditions

a11y(0) + a12Dq−1y(0) = 0 (8)

a21y(a) + a22Dq−1y(a) = 0. (9)

It was shown in [6] that such a q-Sturm–Liouville problem is formally self adjoint, that
is, denoted by �y, the left-hand member of (7), they proved that 〈�y, h〉 = 〈y, �h〉. This
self-adjointness property allowed the authors to use the spectral theorem for compact self-
adjoint operators, after turning the q-difference problem into a q-integral one, by means of the
construction of a q-type Green’s function. A key step for the construction of a q-type Green’s
function in [6] was the definition of a fundamental set of solutions of (7) by means of the
q-analogues of the functions sin and cos defined as

sin(x; q) =
∞∑

n=0

(−1)n
qn2

(q; q)2n

(x (1 − q))2n (10)

and

cos(x; q) =
∞∑

n=0

(−1)n
qn(n+1)

(q; q)2n+1
(x(1 − q))2n+1. (11)

These functions differ slightly from the ones considered in [9]. However, the crucial
information about their roots can be obtained by relating them to the third Jackson q-Bessel
function

Jν(x; q) = xν (qν+1; q)∞
(q; q)∞

∞∑
n=0

(−1)n
qn(n+1)/2

(qν+1; q)n(q; q)n
x2n.

Clearly, we have the relations

sin(x; q) = (q2; q2)

(q3; q2)
(x(1 − q))

1
2 J 1

2
(x(1 − q); q2),

cos(x; q) = (q2; q2)

(q; q2)
(x(1 − q))

1
2 J− 1

2
(x(1 − q)q

1
2 ; q2).

Combining these relations with the bounds obtained in [1] for the roots of the third q-Bessel
function, we obtain the following theorem on the location of the roots of the functions sin(x; q)

and cos(x; q).
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Theorem B. If q < (1 − q2)2 then the nonzero roots of the function sin(x; q) are of the form

xn = q−n+εn

1 − q
(12)

and if q3 < (1 − q2)2 then the roots of the function cos(x; q) are of the form

yn = q−n+1+εn

1 − q
, (13)

where 0 < εn < 1. The restrictions on q can be removed if n is big enough.

Remark. It can be seen from the rapid growth of their zeros, or directly from the power
series expansions (10) and (11), that both sin(x; q) and cos(x; q) are functions of order zero,
when considered as entire functions. As a result they are unbounded on the real line (if they
were bounded on the real line then we could use a Phragmén-Lindelöf argument to extend
the bound to the whole complex plane and this would force the functions to be constant).
This unboundedness property constitutes a serious obstacle in obtaining asymptotics for the
eigenvalues and eigenfunctions of the q-Sturm–Liouville problem.

We will use the next two results from [6] in our discussion.

Theorem C. Concerning the above definitions, the following propositions hold:
(i) Given c1, c2 ∈ C, equation (7) has a unique solution φ, q-regular at zero and satisfying

φ(0, λ) = c1, Dq−1φ(0, λ) = c2, λ ∈ C.

Moreover, φ(x, λ) is entire in λ for all x ∈ [0, a], where the Dq−1 derivative of a function
f (x) at zero is given by

Dq−1f (x) = lim
n→−∞

f (xq−n) − f (0)

xq−n
= Dqf (0).

Theorem D. The eigenvalues of the problem (7)–(9) form an infinite sequence of real numbers
which can be ordered in an ascending way. Moreover, the set of all normalized eigenfunctions
of (7)–(9) forms an orthonormal basis for L2

q(0, a).

Essential in our discussion will be the q-Wronskian of two functions f and g defined as

Wq(f, g)(x) = f (x)Dqg(x) − g(x)Dqf (x). (14)

It was proved by Meijer and Swarttouw that {f, g} forms a complete set of solutions of
(7) if and only if their q-Wronskian does not vanish at any point of [0, a]. The q-Wronskian
of a q-Sturm–Liouville problem will play a fundamental role in the next section.

4. The q-sampling theory

In this section we will establish our main result. The key ingredient will be Kramer’s lemma,
discovered in [16]. It is usually stated with the Lebesgue measure dx but a q-version can be
derived without modifying the structure of the proof. Actually, the result can be stated in a
very general way, using the inner product in a general Hilbert space. Since it is clear that the
q-integral defines a inner product in a Hilbert space, we simply state Kramer’s lemma in the
required form, and appeal to [13] for more information on the subject.

Theorem E. (Kramer’s lemma). Let I ⊂ R be a bounded interval, K(x, t) be a kernel
belonging to L2(I ) for each fixed t in a suitable subset D of R. Suppose also that, for some
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sequence of points belonging to D, {K(x, λn)} is an orthogonal basis for L2(I ). Under these
conditions, every function f written in the form

f (t) =
∫

I

g(x)K(x, t) dqx

admits the sampling expansion

f (t) =
∞∑

n=0

f (λn)

∫
I
K(x, λn)K(x, t) dqx∫

I
|K(x, t)|2 dqx

;

the sampling series converges absolutely and uniformly on every set C ⊂ D for which ‖K(, t)‖
is bounded.

Before the proof of our main result, we need to establish some basic facts about the
q-Wronskian of q-Sturm–Liouville problems.

Lemma 1. Let f and g be q-regular at zero. The Wronskian Wq(f, g)(x) of the q-Sturm–
Liouville problem (7) does not depend on x.

Proof. Applying formula (5) in the proper order, we obtain

DqWq(f, g)(x) = Dq

[
f (x)(Dqg)(x) − g(x)(Dqf )(x)

]
= f (qx)D2

qg(x) − g(qx)D2
qf (x).

Then

DqWq(f, g)(q−1x) = f (x)
(
D2

qg
)
(q−1x) − g(x)

(
D2

qf
)
(q−1x)

= f (x)[v(x)g(x) − λg(x)] − g(x)[v(x)f (x) − λf (x)] = 0.

As a result,

0 = DqWq(f, g)(q−1x) = Wq(f, g)(q−1x) − Wq(f, g)(x)

q−1x(1 − q)

or, for every x 	= 0,

Wq(f, g)(x) = Wq(f, g)(q−1x).

Iterating gives

Wq(f, g)(qnx) = Wq(f, g)(x)

for every n = 1, 2, . . . . Taking the limit when n → ∞, we conclude that Wq(f, g)(x) =
Wq(f, g)(0), since Wq(f, g)(x) is q-regular at zero. �

From now on, we will invoke theorem C and choose, from the solutions of (7), a particular
solution ϕ(x, λ), such that it is an entire function of λ, real valued when λ is real and satisfying

ϕ(0, λ) = −a12, Dq−1ϕ(0, λ) = a11 (15)

and another one satisfying

ψ(a, λ) = −a22, Dq−1ψ(a, λ) = a21, (16)

since the q-Wronskian is independent of x, we can evaluate it at x = a, and use the above
conditions on ψ in order to write

Wq(ϕ,ψ)(λ) = W(λ) = a21ϕ(a, λ) + a22Dq−1ϕ(a, λ). (17)

It follows from the initial conditions (9) that W(λ) = 0 if and only if λ is an eigenvalue
of the q-Sturm–Liouville problem. The set-up is now complete to state our main result. The
proof will go along the same lines of Zayed’s proof in [21].
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Theorem 1. Let ϕ(x, λ) and ψ(x, λ) be the solutions of (7) selected as above. Then every
function f of the form

f (λ) =
∫ a

0
u(x)ϕ(x, λ) dqx, u ∈ L2(0, a) (18)

can be written as the Lagrange-type sampling expansion

f (λ) =
∞∑

n=0

f (λn)
W(λ)

W ′(λn)(λ − λn)
, (19)

where W(λ) is the q-Wronskian of the functions ϕ(x, λ) and ψ(x, λ).

Proof. Multiply equation (7) by ϕ(x, λn). Then consider again equation (7), but replace λ by
λn and multiply this last equation by ϕ(x, λ). Subtracting the two results yields

(λ − λn) ϕ(x, λ)ϕ(x, λn) = D2
qϕ(q−1x, λn)ϕ(x, λ) − D2

qϕ(q−1x, λ)ϕ(x, λn)

an application of the rule for the q-differentiation of a product (4) gives, choosing the right
order in both q-differentiations,

=Dq[Dqϕ(q−1x, λn)ϕ(x, λ) − Dqϕ(q−1x, λ)ϕ(x, λn)].

Performing a q-integration by means of (6) gives

(λ − λn)

∫ a

0
ϕ(x, λ)ϕ(x, λn) dqx

= Dqϕ(q−1a, λn)ϕ(a, λ) − Dqϕ(q−1a, λ)ϕ(a, λn)

−Dqϕ(0, λn)ϕ(0, λ) − Dqϕ(0, λ)ϕ(0, λn)

= ϕ(a, λ)Dq−1(a, λn) − ϕ(a, λn)Dq−1ϕ(a, λ)

the justification for the last identity lies on the fact that by (15) and the initial conditions (8),
we have

Dqϕ(0, λn)ϕ(0, λ) − Dqϕ(0, λ)ϕ(0, λn)

= −Dq−1ϕ(0, λn)a12 − a11ϕ(0, λn) = 0.

Now assume that a21 	= 0. Multiply (17) by ϕ(a, λn) to obtain

W(λ)ϕ(a, λn) = a21ϕ(a, λ)ϕ(a, λn) + a22Dq−1ϕ(a, λ)ϕ(a, λn).

Using the initial condition (8), this identity becomes

W(λ)ϕ(a, λn) = −a22Dq−1ϕ(a, λ)ϕ(a, λ) + a22Dq−1ϕ(a, λ)ϕ(a, λn)

= a22[ϕ(a, λ)Dq−1(a, λ) − ϕ(a, λn)Dq−1ϕ(a, λ)]

as a result,

(λ − λn)

∫ a

0
ϕ(x, λ)ϕ(x, λn) dqx = W(λ)ϕ(a, λn)

(λ − λn)a22

and taking the limit as λ → λn gives∫ a

0
|ϕ(x, λn)|2 dqx = W ′(λn)

ϕ(a, λn)

a21
.

Now, by theorem D, {ϕ(x, λn)} forms an orthogonal basis of L2(0, a). We can therefore apply
Kramer’s lemma and write an integral transform of the form (18) as

f (λ) =
∞∑

n=0

f (λn)
W(λ)

W ′(λn)(λ − λn)
. (20)
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Consider now the case a21 = 0. Multiply the identity (17) by Dq−1ϕ(a, λn) to obtain

W(λ)Dq−1ϕ(a, λn) = a22ϕ(a, λ)Dq−1ϕ(a, λn)

on the other side, by (9) we have Dq−1ϕ(a, λ) = 0 , so that

(λ − λn)

∫ a

0
ϕ(x, λ)ϕ(x, λn) dqx = ϕ(a, λ)Dq−1ϕ(a, λn),

we conclude that∫ a

0
ϕ(x, λ)ϕ(x, λn) dqx = W(λ)Dq−1ϕ(a, λn)

a22(λ − λn)

taking the limit as λ → λn,∫ a

0
|ϕ(x, λn)|2 dqx = W ′(λn)

Dq−1ϕ(a, λn)

(λ − λn)a22

and as before, the use of Kramer’s lemma gives (20). �

Example. Consider the problem

− 1

q
Dq−1Dqy(x) = λy(x)

and the conditions

y(0) = 0 y(1) = 1.

A fundamental set of solutions is {cos(
√

λx; q), sin(
√

λx; q)}. From this we select
ϕ(x, λ) = cos(

√
λx; q) to satisfy the initial conditions. The eigenvalues {λn} of the problem

are the zeros of sin(
√

λ; q), and from (12), if q < (1 − q2)2 or if n is big enough, then
λn = (1 − q)−2q−2n+εn . Since the q-Wronskian is a function of order zero and its zeros are
the λńs, it follows from theorem 1 that every function of the form

f (t) =
∫ 1

0
u(x) cos(

√
λx; q) dqx

has the representation

f (λ) =
∞∑

n=0

f ((1 − q)−2q−2n+εn )
sin(

√
λ; q)

[sin′(
√

x; q)]x=λn
(λ − (1 − q)−2q−2n+εn )

.

Examples 2 and 3 from [5] can be treated in a similar way.
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